

UB4G

PROCUREMENT POLICY NOTE PPN 06/21 CARBON REDUCTION PLAN

2025

CONTENTS

Contents

Letter from Managing Directors	01
Introduction	02
Baseline Emissions Footprint	03
Baseline Emissions Breakdown	04
Emissions Reduction Targets	05
Carbon Reduction Projects	07
Environment & Sustainability Certification	08
Illustrative Projects from Related Entities	10
Carbon Reduction Initiatives	12
Declaration and Sign Off	14

01 Letter from Managing Directors

This plan sets out our carbon baseline, defines our net-zero ambition, and details the roadmap on how we will achieve our carbon reduction goals through actionable and measurable steps. It marks STRABAG UK Ltd's commitment to integrating sustainability across our operations, ensuring that every decision we make drives progress toward a low-carbon, resilient future together with UK Government.

It is imperative we embrace sustainability and environmental stewardship to ensure that our operations are not at the expense of our environment, communities, and future generations. Sustainability is one of our core values, rooted in a deep understanding of the interrelationship between our industry, societal, and planetary wellbeing on both a local and global scale.

As a cornerstone of the UK economy, we believe that the construction, infrastructure, and energy industries will play a critical role in facilitating the transition to a lower and ultimately net-zero carbon economy, whilst improving the environment and creating societal benefit.

In 2023, STRABAG UK Ltd launched its People, Planet, Progress (PPP) strategy, which, from an environmental and sustainability perspective has been translated and is being implemented in the UK through our *UK Environment & Sustainability Strategy 2024, Improvement now, for the future.*

Our vision is to construct a sustainable and resilient future, while our mission is to integrate environmentally responsible and conscientious sustainability practices into every facet of our business. Through this plan, we aim to deliver projects that not only meet the needs of today but also safeguard the wellbeing of future generations, with clear targets to measure, monitor, and accelerate our transition to net-zero.

Simon Wild & Andrew Dixon

Managing Directors, STRABAG UK Ltd



02 Introduction

STRABAG UK Ltd (the Company) is committed to achieving net-zero carbon emissions by 2040, aligning with the STRABAG Group's pledge to support Austria's national climate neutrality target. This goal positions us a decade ahead of the UK's 2050 net-zero target and reinforces our support for the broader aims of the EU Green Deal and global climate initiatives. Our approach to carbon reduction is embedded in all aspects of our business operations. This includes sustainable design and construction practices, energy

use optimisation, and integration of low-carbon technologies.

To reflect this commitment, we are implementing our first Carbon Reduction Plan in accordance with Procurement Policy Note (PPN) 06/21, which outlines our carbon baseline, reduction measures, and roadmap to net zero. This ensures transparency and accountability in delivering sustainable infrastructure.

03 Baseline Emissions Footprint

In 2024, we completed our first comprehensive greenhouse gas (GHG) inventory to establish a carbon emissions baseline, using verified data from 2023 as a benchmark for future comparison.

STRABAG UK Ltd has established its baseline emissions for Scope 1, Scope 2, and Scope 3 in accordance with the ISO 14064 standard and the Greenhouse Gas (GHG) Protocol. The baseline year for this assessment is 2023. We have adopted an operational control consolidation approach, which is well-suited to managing GHG emissions in a project-based business model. Scope 2 emissions are calculated using the GHG Protocol's Market-Based method, reflecting our procurement of renewable electricity through Renewable Energy Guarantee of Origin (REGO) tariffs. Our Scope 3 inventory focuses on material and relevant categories, prioritising the use of actual activity data to ensure accurate emissions calculation. For categories where direct data is not available, reliable estimation techniques are applied transparently. The baseline covers all significant emission sources relevant to our operations. Our

emissions data undergoes regular internal review and is subject to third-party assurance to maintain accuracy and integrity.

We recognise that as our business grows and given the nature of our operations, this reference point may no longer accurately reflect typical activity, because of future significant increases in total carbon emissions. To ensure this reference point remains representative, we will continue to review our emissions data and adjust if required. Furthermore, any future projections will be revised in line with updated assumptions to maintain accuracy and validity.

We anticipate that as our business growth stabilises in future, we will be able to establish a fixed, long-term baseline that more accurately represents typical activity.

TABLE 1 - BASELINE EMISSIONS (2023)

Our baseline is based on data obtained during the period from 01 January 2023 - 31 December 2023. This period reflects our first year of verified emissions data and has been selected as our current baseline

CATEGORY	TOTAL EMISSIONS (tCO2e)
Scope 1	1,427.05
Scope 2	347.76
Scope 3	10,133.61
TOTAL	11,908.42

04 Baseline Emissions Breakdown

We categorise our emissions by Scope to obtain a detailed understanding of our carbon footprint:

- Scope 1 covers direct emissions from sources owned or controlled by the Company, including vehicle and machinery fuel combustion and equipment use on our sites.
- Scope 2 covers indirect emissions from the generation of purchased electricity used in our offices, sites, and facilities.
- Scope 3 covers other indirect emissions from our value chain, including procurement, business travel, waste management, and other upstream and downstream activities.

This breakdown enables us to identify specific areas to target, establish clear objectives for each Scope, and track our overall progress towards net-zero.

TABLE 2 - BASELINE EMISSIONS (tCO2e) BY CATEGORY (2023)

SCOPE 1	TOTAL EMISSIONS (tCO2e)
Fuel for Plant & Equipment	1,329.83
Fuel for Company Vehicles	97.22
SCOPE 2	
Purchased Electricity	347.76
SCOPE 3	
Business Travel	44.20
Waste (Landfill only)	18.18
Downstream Freight	24.03
Upstream Freight	178.27
Employee Commuting	312.15
Upstream Fuels (WTT) ¹	334.91
Purchased Goods & Services	9191.78

¹ WTT (Well to Tank) refers to the emissions produced during the extraction, production, and transportation of fuels before they reach the point of use.

TABLE 3 - UK CURRENT EMISSIONS (tCO2e) BY CATEGORY (2024)

SCOPE 1	TOTAL EMISSIONS (tCO2e)
Fuel for Plant & Equipment	2,425.93
Fuel for Company Vehicles	119.18
SCOPE 2	
Purchased Electricity	738.52
SCOPE 3	
Business Travel	128.45
Waste (Landfill only)	86.10
Downstream Freight	1,826.34
Upstream Freight	626.08
Employee Commuting	222.68
Upstream Fuels (WTT)²	596.80
Purchased Goods & Services	29,302.32

² WTT (Well to Tank) refers to the emissions produced during the extraction, production, and transportation of fuels before they reach the point of use.

The increase in emissions from 2023 to 2024 primarily reflects significant business expansion, including a greater number of projects and higher operational intensity across sites.

05 Emissions Reduction Targets

We first estimate our future emissions by modelling a business-as-usual scenario, assuming an optimistic business growth rate and a strong initial growth driven by major projects. From here, we generate a second scenario which accounts for our proposed carbon reduction initiatives. By comparing the two projections, we obtain a fair process to quantify our carbon reduction savings.

We conclude from our scenario analysis that, by the end of 2026, we expect a 51% reduction in combined Scope 1 and 2 emissions, as well as an 18% reduction in Scope 3 emissions. Looking ahead to 2035, we anticipate a 92% reduction in combined Scope 1 and 2 emissions, and a 40% reduction in Scope 3 emissions.

A major improvement is driven by the switch to REGO-backed green tariff electricity, which by

2027, significantly reduces Scope 2 emissions. For our construction activities, adoption of HVO as an alternative fuel for plant machinery considerably reduces Scope 1 emissions. Additionally, embedding circular economy principles, improving resource efficiency and investing in innovation ensures a steady decline in Scope 3 emissions.

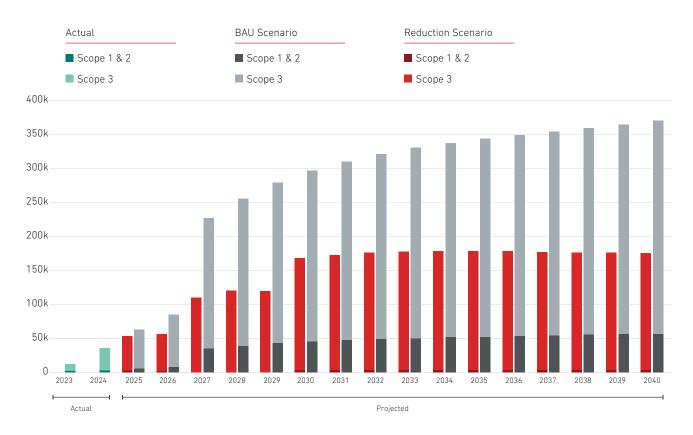

The table below outlines the percentage reductions for each Scope, comparing a business-as-usual scenario with a scenario where our planned carbon reduction initiatives are implemented. Review of progress and alterations that may result from adoption of emerging technologies will take place on an as required basis.

TABLE 4 - PERCENTAGE REDUCTION IN EMISSIONS BY SCOPE FROM IMPLEMENTED MEASURES

YEAR	SCOPE 1 & 2	SCOPE 3	
2026	→ 51%	→ 18%	
2027	91%	28 %	
2028	91%	29 %	
2029	91%	→ 33%	
2030	91%	→ 34%	
2035	92%	40%	
2040	92%	45 %	

FIGURE 1 - PROJECTED EMISSIONS: BUSINESS-AS-USUAL (BAU) VS. REDUCTION SCENARIOS

Our long term progress towards net zero is illustrated in the graph above, with emissions categorised by Scope.

The business-as-usual scenario is shown in grey. Emissions increase year-on-year, given the assumed optimistic business growth. This scenario highlights the potential environmental impact of continued operations without intervention.

The reduction scenario is shown in red. Notably, we observe an eventual plateau in annual emissions, despite the assumed high growth rate, which clearly demonstrates the effectiveness of our carbon reduction measures.

06 Carbon Reduction Projects

The following environmental management measures and projects have been completed or implemented since the 2023 baseline.

6.1 REDUCING STEEL WASTE AND EMBODIED CARBON THROUGH ADVANCED MANUFACTURING

At our Hartlepool Advanced Manufacturing Facility, we utilise state-of-the-art automation and robotics to minimise steel reinforcement waste to negligible levels. This precision-driven approach not only reduces material off-cuts and rework but also improves energy efficiency in production. By significantly lowering the volume of wasted steel, we reduce the embodied carbon associated with reinforcement manufacturing and handling which is a key contributor to overall project emissions. This initiative supports more circular, low-carbon construction practices across our operations.

6.2 ELECTRIC AND HYBRID EQUIPMENT ROLLOUT

We have started moving away from hired diesel plant by investing in our own fleet of fully electric and hybrid machinery, including telehandlers, forklifts, and other critical equipment. This initiative represents a significant step toward decarbonising our operations. By replacing hired diesel equipment with more efficient, lower-emission alternatives, we are improving operational control, reducing indirect emissions, and laying the groundwork for future carbon savings as we continue to scale up electrification and optimise our energy sources.

6.3 DECARBONISING STORAGE OPERATIONS THROUGH SOLAR POWER

We successfully installed solar panels to power the segment pre-storage area for precast concrete segments on a recent project. The system provided electricity for lighting, surveillance, and monitoring equipment, reducing reliance on grid electricity.

6.4 UNBUNDLED REGO PROCUREMENT TO SUPPORT RENEWABLE ENERGY USE

For a recent construction project, we procured 95% electricity through an unbundled Renewable Energy Guarantee of Origin (REGO) tariff which certifies that the amount of electricity consumed is matched by renewable generation elsewhere on the grid. Building on this success, we plan to roll out unbundled REGO procurement across other projects and business operations.

6.5 ENERGY-EFFICIENT LIGHTING UPGRADE INITIATIVE

We have started upgrading lighting across our sites by replacing traditional fixtures with high-performance LED technology. This involved replacing traditional lighting with high-performance LED technology, which offers significantly improved energy efficiency and longer lifespan. This upgrade aligns with our broader sustainability goals.

6.6 CENTRALISED HEATING ROLLED OUT ON PROJECT SITE

We have installed a centralised heating system on one project to replace the previous use of individual heaters across the facility. This upgrade allows for more efficient temperature control, reduces overall energy consumption, and lowers associated greenhouse gas emissions.

6.7 INSTALLATION OF ENERGY SUBMETERING SYSTEMS

To improve energy management and identify opportunities for further reduction, we have installed energy submetering systems on one project to track and monitor energy consumption in greater detail. This enhanced visibility enables more accurate measurement of energy use, helps pinpoint inefficiencies, and supports targeted energy-saving initiatives. Building on this successful implementation, we plan to extend energy submetering across additional projects and sites to drive continuous improvement in energy efficiency and support our carbon reduction goals.

6.8 LAYING THE GROUNDWORK FOR AN EV-ENABLED FUTURE

We have installed electric vehicle (EV) charging points and purchased a small number of electric vehicles, including one electric van, for use on a recent project. The availability of on-site charging infrastructure enables more efficient use of EVs and encourages wider adoption across the business. Building on this initial investment, we plan to expand our EV fleet and charging infrastructure across additional sites.

6.9 LOW CARBON GROUND STABILISATION THROUGH GROUND FREEZING

In line with our obligations under PPN 06/21, ground freezing was selected as a temporary ground stabilisation method to support complex excavation works. This decision was made as part of a carbon-informed process, favouring a solution that reduces embodied carbon compared to traditional methods involving structural concrete or steel retention systems. Ground freezing enables precise, targeted treatment of ground conditions, reducing material inputs, minimising waste, and avoiding the higher emissions associated with producing and transporting carbon-intensive construction materials.

07 Environment & Sustainability Certification

ISO 50001:2018 (Energy Management System): Our Energy Management System, certified to ISO 50001:2018, enables us to systematically improve energy efficiency, reduce consumption, and lower greenhouse gas emissions across our operations.

ISO 14064:2018 (CARBON FOOTPRINT VERIFICATION)

STRABAG UK Ltd is the first division within the STRABAG Group to achieve ISO 14064 certification, demonstrating our leadership in greenhouse gas quantification, reporting, and verification.

PAS 2080 (CARBON MANAGEMENT IN INFRASTRUCTURE)

STRABAG UK Ltd has successfully completed Stage 1 of the PAS 2080 certification, demonstrating our fully established carbon management process as both Designer and Constructor. We aim to complete Stage 2 by August 2026, further strengthening our dedication to reducing whole-life carbon emissions in infrastructure projects.

ESOS (ENERGY SAVINGS OPPORTUNITY SCHEME COMPLIANCE)

We are fully compliant with ESOS requirements and have developed a comprehensive ESOS Action Plan, which outlines key energy-saving opportunities across our operations. This plan has been publicly published,

demonstrating our commitment to transparency and continuous improvement in energy efficiency.

SECR (STREAMLINED ENERGY AND CARBON REPORTING)

As part of our commitment to transparency and continuous improvement, we disclose our annual energy consumption, Scope 1, Scope 2, and relevant Scope 3 emissions, and energy efficiency measures in alignment with SECR requirements.

ISO 20400:2017 (SUSTAINABLE PROCUREMENT - GUIDANCE)

The Company has independently reviewed procurement practices against ISO 20400. The

Company has been recognised as 'Established' organisation in the field of sustainable procurement. While the Company has built a strong foundation for sustainable procurement through robust policies, governance structures, and leadership commitment, we constantly continuing to strengthen our procurement processes by integrating sustainability criteria into supplier selection, contract management, and material sourcing. As part of our continuous improvement, we aim to progress from our current 'Established' recognition to achieving 'Leading' status in sustainable procurement, demonstrating industry leadership and setting a benchmark for responsible sourcing.

08 Illustrative Projects from Related Entities

While this Carbon Reduction Plan focuses on the operational emissions and commitments of STRABAG UK Ltd, we have also included selected examples from completed projects delivered by our related company, STRABAG AG UK Branch to demonstrate established and effective approaches to carbon reduction. These illustrative projects highlight proven technologies, practices, and initiatives which are relevant and transferable to STRABAG UK Ltd's operations. By showcasing these examples, we aim to illustrate our broader organisational capability and commitment to decarbonisation, and to guide the future adoption of similar measures across our UK projects in alignment with our net-zero strategy.

NOTE

- These projects are included for illustrative purposes only.
- Emissions reductions listed do not contribute to STRABAG UK Ltd CRP targets.
- Insights gained from these initiatives will help shape practical carbon reduction strategies within STRABAG UK Ltd.

8.1 SCS JV PROJECT

ZERO TRIM PILING: A CARBON-REDUCTION TECHNIQUE DEPLOYED ON THE HS2 LONDON TUNNELS AND APPROACHES

The Skanska Costain STRABAG Joint Venture (SCS JV) has successfully implemented zero-trim piling, a modern construction technique that significantly enhances efficiency, safety, and sustainability. In traditional piling, concrete is typically overpoured and the excess is manually cropped after it has hardened. In contrast, zero-trim piling uses a vacuum excavator to remove surplus wet concrete immediately after pouring. This approach eliminates the need for time-intensive and hazardous pile cropping.

Key Benefits:

Carbon Reduction: Less concrete is poured, reducing material use and associated carbon emissions thereby, supporting HS2 Ltd's target of achieving net zero by 2040.

Circular Economy: Extracted concrete aggregates are washed and reused as on-site backfill, promoting material reuse.

PIONEERING LOW-CARBON PILING: UK'S FIRST HYDROGEN DUAL-FUEL RIG ON THE HS2 LONDON TUNNELS AND APPROACHES

As part of its commitment to sustainability and innovation, the SCS JV has successfully trialled the UK's first dual-fuel hydrogen piling rig, marking a significant step forward in reducing emissions from construction plant on the HS2 project.

During the trial, a Soilmec SR30 CFA piling rig was converted to run on a dual-fuel system using both diesel and hydrogen. The rig successfully installed four piles to a depth of 30 metres, demonstrating the practical viability of this low-carbon technology on a live construction site.

Key Outcomes:

- CO₂ Emissions Reduction: The converted rig significantly reduces emissions compared to a standard diesel rig, which consumes approximately 100 litres of diesel per day.
- Hydrogen Displacement: On average, 36% of diesel was displaced by hydrogen during operation, significantly lowering fossil fuel dependency.
- On-board Hydrogen System: The rig was adapted to carry on-board hydrogen tanks, allowing for practical on-site use without compromising operational performance.

REDUCING EMBODIED CARBON WITH LOW-CARBON CONCRETE PILING

The SCS JV team implemented a low-carbon piling solution for the installation of over 500 piles. Rather than using traditional piling methods, the team adopted low-carbon concrete and an innovative build-up technique to further reduce environmental impact. The works involved the installation of a 700 mm layer of granular material, topped with a 200 mm layer of concrete, which effectively eliminated the need for additional fill material typically required for post-installation surface repairs.

Key Benefits:

- Carbon Reduction: Use of low-carbon concrete contributes to the overall embodied carbon savings of the project.
- Material Efficiency: The dual-layer system replaces traditional fill and repair materials, reducing waste and resource consumption.

DECARBONISING PILING PLATFORMS WITH EARTH FRIENDLY CONCRETE

As part of our commitment to reducing carbon emissions on the HS2 project, SCS JV collaborated with our supplier, Capital Concrete, to utilise Wagner's Earth Friendly Concrete (EFC) which is a cement-free concrete that typically delivers a 50% reduction in embodied carbon compared to standard mixes.

Key Benefits:

- 79% reduction in carbon emissions (vs. traditional methods)
- 50% lower embodied carbon compared to standard concrete
- Fewer wagon deliveries, reducing logistics-related emissions
- Reduced vehicle movements on-site, improving safety and lowering disruption
- Elimination of cement, one of the largest contributors to carbon in concrete
- Supports HS2 Ltd's sustainability and net-zero goals

REDUCING EMBODIED CARBON WITH SUSTAINABLE CEMENT ALTERNATIVE USING LONDON CLAY

SCS JV, with support from Innovate UK, is pioneering a low-carbon alternative to Portland Cement by exploring the reuse of excavated London Clay from its 21 km tunnelling works on the HS2 London Tunnels and Approaches. The project involves trialling the calcination of this clay to produce a sustainable cementitious material, potentially replacing traditional Portland Cement in permanent concrete works on the HS2 project.

Key Objectives and Benefits:

- Carbon Reduction: Cement production is one of the largest industrial sources of CO₂. Replacing it with calcined clay offers a significant carbon saving, contributing to HS2 Ltd's net zero goals.
- Circular Economy: The trial promotes the beneficial reuse of tunnel arisings, turning waste into high-value construction material.
- Innovation Funding: Backed by Innovate UK, the project positions SCS JV and HS2 Ltd at the forefront of sustainable materials innovation in infrastructure.

8.2 WOODSMITH PROJECT

BENEFICIAL REUSE OF TUNNEL ARISINGS

Tunnel arisings from the Woodsmith project were approved for use as general fill or capping material. A project within 4 km of the Woodsmith Material Transport Site required fill for capping contaminated land. The material was transferred to the receiving site for reuse.

- 519,479.88 m³ million tonnes reused to date
- Landfill avoided, reducing environmental impact
- Supports land remediation and sustainable construction
- Cuts haulage and import of virgin materials

09 Carbon Reduction Initiatives

Our carbon reduction strategy focuses on low-carbon materials, circularity principles, clean energy, efficient transportation, and process optimisation. In particular, we recognise that addressing Scope 3 emissions is critical, as they represent the largest share of our overall carbon footprint.

9.1 ENERGY

We aim to improve energy efficiency and transition to greener energy sources across our operations. Our planned initiatives include:

- A transition to hybrid and electrical plant and equipment to reduce overall energy consumption, while mandating the use of HVO fuel as a cleaner alternative to conventional diesel to achieve significant carbon reductions. A phased transition from diesel to HVO sees a 50% adoption in 2026, rising to 75% by 2027, and 100% by 2028. This measure is a significant component of our Scope 1 emissions.
- We plan to trial synthetic biofuels as potential alternatives to HVO, where client specifications mandate a non-HVO fuel option.
- A transition to REGO-backed green tariffs for electricity across all our sites and offices. This will be achieved in full by 2027 across all sites, contributing to a 95% reduction in Scope 2 emissions.
- A phased approach to fleet electrification and adoption of biofuels. This will be implemented between 2026 and 2029, reducing Scope 1 emissions from our transport activities.

9.2 SUSTAINABLE MATERIALS & CIRCULAR ECONOMY

To reduce waste and optimise material use, our proposed measures are:

- Low-Carbon Cement Alternatives: maximise the use of GGBS and other alternative binders across the business.
- We are working closely with our colleagues

from across the STRABAG Group, leading the development of sustainable and resource-efficient materials in a dedicated project referred to as NaWaRo. The NaWaRo team is utilising locally sourced hemp and flax to scale up the production of bio-based insulation, acoustic screening, and bedding layer for green roofing. In addition, the team is working with several academic institutes and certification bodies to develop building products from straw, corn, reed, sugarbeet, hemp, and biochar.

- Currently working on a pilot project with Innovate UK and University of East London to use waste natured-based materials to make our annulus grout which will have substantial carbon savings.
- Sustainable Asphalt: We will introduce Recycled Asphalt Pavement (RAP) and Warm-Mix Asphalt to reduce emissions during road and pavement works.
- Recycled Aggregates & Fill: From 2026, expand use across major infrastructure projects.
- Plastic Reduction: Shift to recycled and bio-based plastics, beginning with a pilot adoption in 2026.
- Structural Steel: Adoption of recycled steel for structural works, with a 60% emissions reduction by 2026.
- Efficient MEP3 Systems: Modular designs aimed at reducing mechanical waste, with 2031 as an earliest implementation date.

9.3 SUSTAINABLE PROCUREMENT

Sustainable procurement across our supply chain is central to reducing Scope 3 emissions. This approach is already embedded within our operations and is now expanding further across projects and our

procurement categories. By prioritising low-carbon products and services, we aim to influence emissions beyond our direct operations. Other key sustainable procurement initiatives include:

- Engaging Suppliers on Sustainability:
 - Collaborating with suppliers to assess and reduce the carbon footprint of their products and operations. This will include requiring suppliers to meet sustainability criteria and report their carbon emissions. Progress will be tracked by the percentage of suppliers meeting our sustainability benchmarks.
- Whole Lifecycle Analysis (WLCA): Employing
 lifecycle assessments during procurement
 decisions to prioritise items with lower total
 carbon impacts over their operational lifetimes.
 Outcomes will be measured by reductions in
 lifecycle carbon emissions for major procurement
 categories.
- Local Procurement Initiatives: Sourcing goods and services locally to minimise transport emissions. KPIs will include the percentage of goods procured within a defined local radius and associated transport carbon emission savings.
- Supplier Training: Providing regular training sessions and workshops for suppliers to improve their understanding of sustainability requirements and practices.

9.4 SCOPE 1 & 2 EMISSIONS REQUIREMENTS

We understand that the successful delivery of our projects begins with a carefully planned construction site designed with sustainability at its core. In line with PPN 06/21 and our commitment to carbon reduction, the Company has established a Low Carbon Efficient Site Set-Up and Operation standard that must be implemented and considered throughout the lifecycle of our construction projects.

The standard prioritises energy efficiency and renewable energy. This includes LED lighting, energy-efficient site cabins, and renewable energy sources like solar panels. A low-carbon strategy for equipment and vehicles prioritises the use of electric and hybrid options, as well as HVO fuel. Sustainable procurement

practices focus on responsible material sourcing and waste reduction, and water management strategies aim to optimise water consumption.

9.5 GOVERNANCE & ACCONTABILITY

We understand that robust governance and accountability frameworks are fundamental to our carbon reduction plan, ensuring that our sustainability commitments are embedded across all levels of the organisation. We have established comprehensive policies and procedures that align with ISO 14001, ISO 50001, PAS2080:2023, and ISO 14064 to guide our approach to carbon reduction, energy efficiency, and environmental impact mitigation.

To ensure carbon emissions are fully accounted for, we have integrated Whole Life Carbon Assessments (WLCA) as a core component to track and report project-specific carbon reduction progress. All projects will have a carbon baseline and carbon reduction opportunity appraisal to highlight reduction opportunities.

Leadership plays a pivotal role in driving our sustainability agenda. Our Executive Team provides strategic direction and oversight, ensuring alignment with the STRABAG Group's overarching net-zero target by 2040. Our Environment & Sustainability Team, comprising specialists in environmental management, energy efficiency, and carbon accounting, is responsible for implementing initiatives, tracking progress, and ensuring compliance with UK regulatory requirements.

Clear roles and responsibilities have been defined across our organisation to ensure accountability at every level. Project directors, construction managers, and site teams are actively involved in implementing carbon reduction measures in site operations. We work collaboratively with procurement teams, supply chain partners, and subcontractors to drive sustainability improvements across all project phases.

To maintain transparency and measure our impact, we conduct regular audits and performance reviews. Our carbon reporting undergoes internal and third-party verification to ensure data accuracy and alignment with best practices. We are also committed to external disclosure, reporting our carbon performance through recognised frameworks as is described in Section 7.

10 Declaration and Sign Off

This Carbon Reduction Plan has been completed in accordance with PPN 06/21 and associated guidance and reporting standard for Carbon Reduction Plans.

Emissions have been reported and recorded in accordance with the published reporting standard for Carbon Reduction Plans and the GHG Reporting Protocol corporate standard and uses the appropriate Government emission conversion factors for greenhouse gas company reporting.

Scope 1 and Scope 2 emissions have been reported in accordance with SECR requirements, and the required subset of Scope 3 emissions have been reported in accordance with the published reporting standard for Carbon Reduction Plans and the Corporate Value Chain (Scope 3) Standard.

This Carbon Reduction Plan has been reviewed and signed off by the UK management directorate (or equivalent management body).

Print Name: JAMES KEEGAN

Title: Director of Environment and Sustainability

Date: 28/10/2025

Signed on behalf of the supplier:

